Updated guide to the RTKLIB configuration file

It’s been quite a while since I’ve updated my guide to the RTKLIB configuration file.  Since the last update I’ve added a couple of new features and learned a bit more about some of the existing features.  For previous updates,  I’ve just updated the original post, but this time I thought I would re-publish it to make it easier to find.

One of the nice things about RTKLIB is that it is extremely configurable and has a whole slew of input options available. Unfortunately these can be a bit overwhelming at times, especially for someone new to the software. The RTKLIB manual does briefly explain what each option does, but even with this information it can be difficult to know how best to choose values for some of the parameters.

I won’t try to give a comprehensive explanation of all the input options here, but will explain the ones I have found useful to adjust in my experiments and include a little about why I chose the values I did. I describe them as they appear in the configuration file rather than how they appear in the RTKNAVI GUI menu but the comments apply to both. I created this list by comparing my latest config files to the default config file and noting which settings were different. The values in the list below are the values I use in my config file for a 5 Hz rover measurement rate.  The same config files can be used for either RTKNAVI, RTKPOST, or RNX2RTKP.

The settings and options highlighted in blue below are available only in my demo code and not in the release code but otherwise much of what I describe below will apply to either code.  Most of my work is done for RTK solutions with Ublox M8N and M8T receivers and short baselines and these settings will more directly apply to these combinations but should be useful at least as a starting point for other scenarios.

This post is intended to be used as a supplement to the RTKLIB manual, not as a standalone document, so please refer to it for information on any of the input parameters not covered here.

SETTING1:

pos1-posmode = static, kinematic, static-start, movingbase, fixed

If the rover is stationary, use “static”. If it is moving, use “kinematic” or “static-start”. “Static-start” will assume the rover is stationary until first fix is achieved and then switch to dynamic mode, allowing the kalman filter to take advantage of the knowledge that the rover is not moving initially.  You can use “movingbase” if the base is moving as well as the rover, but it is not required unless the base is moving long distances.  I often find that “kinematic” gives better solutions than “movingbase” even when the base is moving.  “Movingbase” mode is not compatible with dynamics, so be sure not to enable both at the same time.  If the base and rover remain at a fixed distance apart, set “pos2-baselen” and “pos2-basesig” when in “movingbase” mode.   Use “fixed” if you know the rover’s exact location and are only interested in analyzing the residuals.

pos1-frequency = l1

L1 for single frequency receivers,  L1+L2 if the rover is dual frequency GPS/GLONASS/Bediou,  L1+L2+E5b if Galileo is included 

pos1-soltype = forward, backward, combined

This is the direction in time that the kalman filter is run. For real-time processing, “forward” is your only choice. For post-processing, “combined” first runs the filter forward, then backwards and combines the results. For each epoch, if both directions have a fix, then the combined result is the average of the two with a fixed status unless the difference between the two is too large in which case the status will be float. If only one direction has a fix, that value will be used and the status will be fixed. If both directions are float then the average will be used and the status will be float. Results are not always better with combined because a false fix when running in either direction will usually cause the combined result to be float and incorrect. The primary advantage of combined is that it will usually give you fixed status right to the beginning of the data while the forward only solution will take some time to converge. The 2.4.3 code always resets the bias states before starting the backwards run to insure independent solutions. The demo5 code doesn’t reset the bias states to avoid having to lock back up when the rover is moving if ambiguity resolution is set to “continuous” but does reset them if it is set to “fix-and-hold”.  I only use the “backward” setting for debug when I am having trouble getting an initial fix and want to know what the correct satellite phase-biases are.

pos1-elmask = 15 (degrees)

Minimum satellite elevation for use in calculating position. I usually set this to 10-15 degrees to reduce the chance of bringing multipath into the solution but this setting will be dependent on the rover environment. The more open the sky view, the lower this value can be set to.

pos1-snrmask-r = off, pos1-snrmask-b = off,on

Minimum satellite SNR for rover (_r) and base(_b) for use in calculating position. Can be a more effective criteria for eliminating poor satellites than elevation because it is a more direct measure of signal quality but the optimal value will vary with receiver type and antenna type so I leave it off most of the time to avoid the need to tune it for each application.

pos1-snrmask_L1 =35,35,35,35,35,35,35,35,35

Set SNR thresholds for each five degrees of elevation. I usually leave all values the same and pick something between 35 and 38 db depending on what the nominal SNR is. These values are only used if pos1-snrmask_x is set to on.  If you are using dual frequencies, you will need to also set “pos1-snrmask_L2”

pos1-dynamics = on

Enabling rover dynamics adds velocity and acceleration states to the kalman filter for the rover. It will improve “kinematic” and “static-start” results, but will have little or no effect on “static” mode. The release code will run noticeably slower with dynamics enabled but the demo5 code should be OK. Be sure to set “prnaccelh” and “prnaccelv” appropriately for your rover acceleration characteristics.  Rover dynamics is not compatible with “movingbase” mode, so turn it off when using that mode.

pos1-posopt1 = off, on (Sat PCV)

Set whether the satellite antenna phase center variation is used or not. Leave it off for RTK but you set it for PPP. If set to on, you need to specify the satellite antenna PCV file in the files parameters.

pos1-posopt2 = off, on (Rec PCV)

Set whether the receiver antenna phase center variations are used or not. If set to on, you need to specify the receiver antenna PCV file in the files parameters and the type of receiver antenna for base and rover in the antenna section. Only survey grade antennas are included in the antenna file available from IGS so only use this if your antenna is in the file. It primarily affects accuracy in the z-axis so it can be important if you care about height. You can leave this off if both antennas are the same since they will cancel.

pos1-posopt5 = off, on (RAIM FDE)

If the residuals for any satellite exceed a threshold, that satellite is excluded. This will only exclude satellites with very large errors but requires a fair bit of computation so I usually leave this disabled.

pos1-exclsats=

If you know a satellite is bad you can exclude it from the solution by listing it here. I only use this in rare cases for debugging if I suspect a satellite is bad.

pos1-navsys = 7, 15,

I always include GLONASS and SBAS sats, as more information is generally better.  If using the newer 3.0 u-blox firmware with the M8T I also enable Galileo.

 

SETTING2:

pos2-armode = continuous, fix-and-hold

Integer ambiguity resolution method. “Continuous” mode does not take advantage of fixes to adjust the phase bias states so it is the most immune to false fixes.  “Fix-and-hold” does use feedback from the fixes to help track the ambiguities.  I prefer to use “fix-and-hold” and adjust the tracking gain (pos2-varholdamb) low enough to minimize the chance of a false fix.  If “armode” is not set to “fix-and-hold” then any of the options below that refer to holds don’t apply, including pos2-gloarmode.

pos2-varholdamb=0.001, 0.1 (meters)

In the demo5 code, the tracking gain for fix-and-hold can be adjusted with this parameter. It is actually a variance rather than a gain, so larger values will give lower gain. 0.001 is the default value, anything over 100 will have very little effect. This value is used as the variance for the pseudo-measurements generated during a hold which provide feedback to drive the bias states in the kalman filter towards integer values.  I find that values from 0.1 to 1.0 provides enough gain to assist with tracking while still avoiding tracking of false fixes in most cases.

pos2-gloarmode = on, fix-and-hold, autocal

Integer ambiguity resolution for the GLONASS sats.  If your receivers are identical, you can usually set this to “on” which is the preferred setting since it will allow the GLONASS sats to be used for integer ambiguity resolution during the initial acquire. If your receivers are different or you are using two u-blox M8N receivers you will need to null out the inter-channel biases with this parameter set to “fix-and-hold” if you want to include the GLONASS satellites in the AR solution. In this case the GLONASS sats will not be used for ambiguity resolution until after the inter-channel biases have been calibrated which begins after the first hold. There is an “autocal” option as well, but I have never been able to make this work in the 2.4.3 code.  In the demo5 code I have added the capability to this feature to preset the initial inter-channel bias, variance, and calibration gain.  I then set the biases to known values for the particular receiver pair and set the gain very low.  This defeats the auto calibration aspect of the feature but does provide a mechanism to specify the biases which is otherwise missing in RTKLIB.  When “autocal” is used, the GLONASS satellites will be used for the initial acquire.  The “autocal” feature can also be used to determine the inter-channel biases with a zero or short baseline using an iterative approach.

pos2-gainholdamb=0.01

In the demo5 code, the gain of the inter-channel bias calibration for the GLONASS satellites can be adjusted with this parameter. 

pos2-arthres = 3

This is the threshold used to determine if there is enough confidence in the ambiguity resolution solution to declare a fix. It is the ratio of the squared residuals of the second-best solution to the best solution. I generally always leave this at the default value of 3.0 and adjust all the other parameters to work around this one. Although a larger AR ratio indicates higher confidence than a low AR ratio, there is not a fixed relationship between the two. The larger the errors in the kalman filter states, the lower the confidence in that solution will be for a given AR ratio. Generally the errors in the kalman filter will be largest when it is first converging so this is the most likely time to get a false fix. Reducing pos2-arthers1 can help avoid this.  

pos2-arfilter = on

Setting this to on will qualify new sats or sats recovering from a cycle-slip. If a sat significantly degrades the AR ratio when it is first added, its use for ambiguity resolution will be delayed. Turning this on should allow you to reduce “arlockcnt” which serves a similar purpose but with a blind delay count.

pos2-arthres1 = 0.004-0.10

Integer ambiguity resolution is delayed until the variance of the position state has reached this threshold. It is intended to avoid false fixes before the bias states in the kalman filter have had time to converge. It is particularly important to set this to a relatively low value if you have set eratio1 to values larger than 100 or are using a single constellation solution. If you see AR ratios of zero extending too far into your solution, you may need to increase this value since it means ambiguity resolution has been disabled because the threshold has not been met yet. I find 0.004 to 0.10 usually works well for me but if your measurements are lower quality you may need to increase this to avoid overly delaying first fix or losing fix after multiple cycle slips have occurred.

pos2-arthres2

Relative GLONASS hardware bias in meters per frequency slot.  This parameter is only used when pos2-gloarmode is set to “autocal” and is used to specify the inter-channel bias between two different receiver manufacturers.  To find the appropriate values for common receiver types, as well as how to use this parameter for an iterative search to find values for receiver types not specified, see this post.  This parameter is defined but unused in RTKLIB 2.4.3

pos2-arthres3 = 1e-9,1e-7

Initial variance of the GLONASS hardware bias state.  This parameter is only used when pos2-gloarmode is set to “autocal”.  A smaller value will give more weight to the initial value specified in pos2-arthres2.  I use 1e-9 when pos2-arthres2 is set to a  known bias, and 1e-7 for iterative searches.  This parameter is defined but unused in RTKLIB 2.4.3

pos2-arthres4 = 0.00001,0.001

Kalman filter process noise for the GLONASS hardware bias state.  A smaller value will give more weight to the initial value specified in pos2-arthres2.  I use 0.00001 when pos2-arthres2 is set to a  known bias, and 0.001 for iterative searches.  This parameter is defined but unused in RTKLIB 2.4.3

pos2-arlockcnt = 0, 5  

Number of samples to delay a new sat or sat recovering from a cycle-slip before using it for integer ambiguity resolution. Avoids corruption of the AR ratio from including a sat that hasn’t had time to converge yet. Use in conjunction with “arfilter”. Note that the units are in samples, not units of time, so it must be adjusted if you change the rover measurement sample rate.  I usually set this to zero for u-blox receivers which are very good at flagging questionable observations but set it to at least five for other receivers.  If not using the demo5 RTKLIB code, set this higher since the “arfilter” feature is not supported.

pos2-minfixsats = 4

Minimum number of sats necessary to get a fix. Used to avoid false fixes from a very small number of satellites, especially during periods of frequent cycle-slips.

pos2-minholdsats = 5

Minimum number of sats necessary to hold an integer ambiguity result. Used to avoid false holds from a very small number of satellites, especially during periods of frequent cycle-slips.

pos2-mindropsats = 10

Minimum number of sats necessary to enable exclusion of a single satellite from ambiguity resolution each epoch.  In each epoch a different satellite is excluded.  If excluding the satellite results in a significant improvement in the AR ratio, then that satellite is removed from the list of satellites used for AR.

pos2-rcvstds = on,off

Enabling this feature causes the the measurement variances for the raw pseudorange and phase measurement observations to be adjusted based on the standard deviation of the measurements as reported by the receiver. This feature is currently only supported for u-blox receivers. The adjustment in variance is in addition to adjustments made for satellite elevation based on the stats-errphaseel parameter.  I generally get better results with this turned off.

pos2-arelmask = 15

Functionally no different from the default of zero, since elevations less than “elmask” will not be used for ambiguity resolution but I changed it to avoid confusion.

pos2-arminfix = 20-100  (5-20*sample rate)

Number of consecutive fix samples needed to hold the ambiguities. Increasing this is probably the most effective way to reduce false holds, but will also increase time to first hold and time to reacquire a hold.  As the ambiguity tracking gain is reduced (i.e. as pos2-varholdamb is increased), and the number of observations increases, arminfix can be reduced.  Note that this value should also be adjusted if the rover measurement sample rate changes.

pos2-elmaskhold = 15

Functionally no different from the default of zero, since elevations less than “elmask” will not be used for holding ambiguity resolution results but I changed it to avoid confusion.

pos2-aroutcnt = 100 (20*sample rate)

Number of consecutive missing samples that will cause the ambiguities to be reset. Again, this value needs to be adjusted if the rover measurement sample rate changes.

pos2-maxage = 100

Maximum delay between rover measurement and base measurement (age of differential) in seconds. This usually occurs because of missing measurements from a misbehaving radio link. I’ve increased it from the default because I found I was often still getting good results even when this value got fairly large, assuming the dropout occurred after first fix-and-hold.

pos2-rejionno = 1000

Reject a measurement if its pre-fit residual is greater than this value in meters. I have found that RTKLIB does not handle outlier measurements well, so I set this large enough to effectively disable it. With non-ublox receivers which typically are not as good at flagging outliers, I sometimes have to set this back to the default of 30 or even lower to attempt to handle the outliers but this is a trade-off because it can then cause other issues, particularly with initial convergence of the kalman filter.

 

OUTPUT:

out-solformat = enu, llh, xyz

I am usually interested in relative distances between rover and base, so set this to “enu”. If you are interested in absolute locations, set this to “llh” but make sure you set the exact base location in the “ant2” settings. Be careful with this setting if you need accurate z-axis measurements. Only the llh format will give you a constant z-height if the rover is at constant altitude. “Enu” and “xyz” are cartesian coordinates and so the z-axis follows a flat plane, not the curvature of the earth. This can lead to particularly large errors if the base station is located farther from the rover since the curvature will increase with distance.

out-outhead = on

No functional difference to the solution, just output more info to the result file.

out-outopt = on

No functional difference to the solution, just output more info to the result file.

out-outstat = residual

No functional difference to the solution, just output residuals to a file. The residuals can be very useful for debugging problems with a solution and can be plotted with RTKPLOT as long as the residual file is in the same folder as the solution file.  

stats-eratio1 = 300
stats-eratio2  = 300

Ratio of the standard deviations of the pseudorange measurements to the carrier-phase measurements. I have found a larger value works better for low-cost receivers, but that the default value of 100 often work better for more expensive receivers since they have less noisy pseudorange measurements. Larger values tend to cause the kalman filter to converge faster and leads to faster first fixes but it also increases the chance of a false fix. If you increase this value, you should set pos2-arthres1 low enough to prevent finding fixes before the kalman filter has had time to converge. I believe increasing this value has a similar effect to increasing the time constant on a pseudorange smoothing algorithm in that it filters out more of the higher frequencies in the pseudorange measurements while maintaining the low frequency components.

stats-prnaccelh = 3.0

If receiver dynamics are enabled, use this value to set the standard deviation of the rover receiver acceleration in the horizontal components. This value should include accelerations at all frequencies, not just low frequencies. It should characterize any movements of the rover antenna, not just movements of the complete rover so it may be larger than you think. It will include accelerations from vibration, bumps in the road, etc as well as the more obvious rigid-body accelerations of the whole rover.  It can be estimated by running a solution with this value set to a large value, then examining the accel values in the solution file with RTKPLOT

stats-prnaccelv = 1.0

The comments about horizontal accelerations apply even more to the vertical acceleration component since in many applications the intentional accelerations will all be in the horizontal components. It is best to derive this value from actual GPS measurement data rather than expectations of the rigid-body rover. It is better to over-estimate these values than to under-estimate them.

ant2-postype = rinexhead, llh, single

This is the location of the base station antenna. If you are only interested in relative distance between base and rover this value does not need to be particularly accurate. For post-processing I usually use the approximate base station location from the RINEX file header. If you want absolute position in your solution, then the base station location must be much more accurate since any error in that will add to your rover position error. If I want absolute position, I first process the base station data against a nearby reference station to get the exact location, then use the ”llh” or “xyz”option to specify that location. For real-time processing, I use the “single” option which uses the single solution from the data to get a rough estimate of base station location.

ant2-maxaveep = 1

Specifies the number of samples averaged to determine base station location if “postype” is set to “single”. I set this to one to prevent the base station position from varying after the kalman filter has started to converge since that seems to cause long times to first fix. In most cases for post-processing, the base station location will come from the RINEX file header and so you will not use this setting. However if you are working with RTCM files you may need this even for post-processing.

 

MISC:

misc-timeinterp =off,on

Interpolates the base station observations.  I generally set this to “on” if the base station observations sample time is larger than 5 seconds.

Please help me update this list if you have had success adjusting other options or using different settings for these options, or if you disagree with any of my suggestions. I will treat this as a working document and continue to update it as I learn more.

Advertisements

PPK vs RTK: A look at RTKLIB for post-processing solutions

The “RTK” in RTKLIB is an abbreviation for “Real-time Kinematics”, but RTKLIB is probably used at least as often for “PPK” or “Post-Processed Kinematics” as it is for real-time work.  In applications like precision agriculture, where the solution is part of a real-time feedback loop, RTK is obviously a requirement, but in many other applications there is no need for a real-time solution.  For example, drones are often used for collecting photographic or other sensor data but only need precision positions after the fact to process the data.  PPK is simpler than RTK because there is no need for a real-time data link between GPS receivers and so is often preferable if there is a choice.  The downside of course is that if there is something wrong with the collected data, you may not find out until it’s too late.

For the most part, RTKLIB solutions are identical regardless if they are run on real-time data (RTK) or run on previously collected data (PPK).  The most significant exception to this rule is what RTKLIB calls the “Filter Type”.  This is selected in the configuration and can be set to forward, backward, or combined.  Forward is the default and this is the only mode that can be used in real-time solutions.  In forward mode, the observation data is processed through the kalman filter in the forward direction, starting with the beginning of the data and continuing through to the end.  Backward mode is the opposite,  data is run through the filter starting with the end of the data and continuing to the beginning.  In Combined mode, the filter is run both ways and the two results are combined into a single solution.   This mode is set using the “Filter Type” box in the Options menu if using one of the GUI apps, or with the “pos1-solytpe” input parameter in the configuration file if using a CUI app.

There are two advantages to a combined solution over a forward solution.  First of all, it gives two chances to find a fix for each data point.  Let’s say there is an anomaly in the middle of the data set that causes the solution to switch from fix to float and not come back to fix for some period of time.   It may cause both the forward and backward solutions to lose fix but they will lose fix on opposite sides of the anomaly.  By combining the two solutions we are likely to get a fix for everywhere except right at the anomaly.  Another case where it often helps is in recovering the beginning of a data set.  Let’s say the first fix didn’t occur until five minutes into the data set.  With a forward solution, you would need to guarantee that nothing important happened during that five minutes, but with a combined solution, the backward pass will normally provide a fix all the way to the very beginning of the data set so there is no lost data.

The second advantage of the combined solution is that it provides an extra level of validation of the results.  To understand how this happens, it’s important to understand how RTKLIB combines the forward and reverse solutions.  For each solution position point there are three possibilities; both passes are float, one is float and one is fix, or both are fixed.  If both passes generate a float position, then the combined result will be a float with a value equal to the average of the two positions.  If one is float, and the other is fix, the float is thrown away and the fix is used.  In the case where both are fixed, then RTKLIB will attempt to validate the result by comparing the two values.  If they differ by less than four sigma, then the result will be a fix, otherwise it will be downgraded to a float.  Either way, the value will be the average of the two positions.  This degrading the solution type when the answers from opposite directions differ provides an increased confidence in the solution, at least for points for which we got two fixed values.

I will show a couple examples of the differences between forward and combined modes.  The first example is a more typical case and demonstrates how combined mode will normally give you a higher fix percentage while at the same time increasing confidence in the solution.

The plots below were taken from an M8N receiver on a sailboat using a nearby CORS station as base.  With ambiguity resolution mode set to fix-and-hold, I was able to get a solution with nearly 100% fix except for the initial convergence, but I would prefer to use continuous ambiguity resolution because of the higher confidence of the solution.  In the position plots below, the top was run in forward mode, the middle in backwards mode, and the bottom in combined mode, all in continuous ambiguity resolution mode.

combined1

As you can see the forwards and backwards mode solutions are not bad but both have gaps of float in the middle as well as floats during the initial acquisition.  The combined solution though has almost 100% fix rate and in addition includes the additional confidence knowing that every point found the same solution when running the data in opposite directions.

This second example comes from a data set posted on the Emlid Reach forum with a question on why the combined solution was worse than the forward solution.  In the plots below, the top solution is forward, the middle is backward, and the bottom is combined.

combined2

This data was GPS and SBAS only, so had a fairly low number of satellites, also included a mix of poor observations and the solution was run with full tracking gain (i.e fix-and-hold with the default gain).  Both forward and backward runs found fixed (green) solutions and tracked them all the way through the data set.  However, at least one of them was most likely a false fix, causing the fix to be downgraded to float (yellow) for most of the combined solution as can be seen be seen in the bottom plot.

To confirm this, the plot below shows the difference between the forward and backward solutions.  As you can see, the two differ by a fairly substantial amount and it is not possible from this data to know which one is correct.

combined3

In this case, turning off fix-and-hold and running ambiguity resolution in continuous mode sheds some light on what may be going on.  The plots below are again forward, backward, and combined.  This time the forward solution loses fix early on and never recovers it, whereas the backwards solution maintains a fix through the whole data set and is probably correct since without fix-and-hold enabled, it is very unlikely to stay locked that long to an incorrect solution.  The backward solution is also consistent with the beginning of the forward solution, since the combined solution remains fixed in the early part of the data set where both forward and backward solutions are fixed.

combined4

Again, this can be confirmed by looking at the difference between the forward and backward solutions.  In this case they agree everywhere that both are fixed.

combined5

As this example demonstrates, if post-processing is an option, it often makes sense to run in combined mode with continuous ambiguity resolution instead of forward mode with fix-and-hold enabled.  The additional pass will increase the chances of getting a fixed solution without the risk of locking onto a false fix that fix-and-hold can cause.  Even if you find you can not disable fix-and-hold completely, it may allow you to reduce the tracking gain (pos2-varholdamb)

So one last question is why are there still some float values in the middle of the combined solution? We would expect that since the backwards solution is fixed and the forward solution is float, that the combined solution should just become the backwards solution and all but the very end should be fixed.

The answer to this question turns out to be the way the reverse pass of the kalman filter is initialized.  I have chosen in the demo5 code to not reset the filter between forward and reverse passes if continuous ambiguity resolution is selected.  If fix-and-hold is selected then the demo5 code does re-initialize the kalman filter between passes.  This is different from the release code which always resets the filter between passes.

In this case, the results would have been slightly better if the filter were re-initialized but most of the time I find that allowing the filter to stay converged avoids a large gap in the backwards solution during the active part of the data set where the filter is reconverging. With fix-and-hold enabled I have found the chance of staying locked to an incorrect fix is too high and so it is better to reset the filter.  This is a recent change and hasn’t yet made it into the released version of demo5 but I should get it out soon.  The current version of the demo5 code (b28a) does not reset the filter for either case.

Modifying the if statement in the existing code in postpos.c to match the line below will give you the newest behavior.  Removing the if statement altogether will cause the filter to always be reset and will match the release code.

combined6

The other factor to consider when deciding whether to run the filter type in forward or combined mode is that combined mode will take nearly twice as long to run since it is processing each data point twice.  Most of the time this shouldn’t be an issue since it is not being run in real-time.

So to summarize, my recommendation would be to use combined mode if you do not need a real-time solution as the only real cost is a small amount of additional computation time and it will give you both higher fix percentages and more confidence in those fixes.

Newest U-blox M8N receivers not usable with RTKLIB

It looks like it is no longer possible to access the raw GPS measurements on the newest version of the u-blox M8N receiver.  Access to these raw measurements on the M8N has always been through debug messages not officially supported by u-blox.  Last year, when they migrated from the 2.01 version of firmware to the 3.01, version they scrambled the output of these messages so they were no longer readable by RTKLIB.

Until recently though, the units they were shipping still had an older 2.01 version of ROM.  With these units it is possible to downgrade the firmware to 2.01 using the instructions on their website.  With the older firmware loaded, the receivers revert to their previous behavior and the debug messages are no longer scrambled.

Apparently their newest units are shipping with a 3.01 version of ROM and this ROM is not compatible with the older 2.01 version of firmware.  If you attempt to load the older firmware it will appear to succeed but will still be running the newer code.

You can see what version of ROM and firmware your receiver is running using the UBX-MON-VER message from the u-center console.  The example below shows the message output for one of the newer modules with the 3.01 ROM after attempting to download the older firmware.  I believe the firmware listed under “Extension(s)” is the ROM version and the firmware listed under “Software Version” is the version of firmware loaded to flash.  In this case you can see that the ROM is version 3.01 and that the flash is still running version 3.01 even though it was attempted to load the 2.01 firmware.

fw_ver

In an older version of the M8N module, the ROM code listed under “Extension(s)” would have been 2.01 and the firmware listed under “Software Version” could be either 2.01 or 3.01 depending on how old the module was and what firmware had been downloaded to it.

There are a few more details about the issue on the u-blox forum in this thread.  Thanks to Marco for making me aware of the issue and Clive and Helge for providing a detailed explanation of what is going on.

If you are using the u-blox M8T, and not the M8N, then you will be using the officially supported raw measurement messages and would normally not care about access to the debug messages.  The only exception I know of is that the resolution of the SNR measurements are 0.2 dB in the debug messages and 1.0 in the official messages.  I have not confirmed that the debug messages on the 3.01 M8T firmware are scrambled but it is likely that they are.

[Note 6/25/17:  A couple of readers have pointed out that this is not the whole story.  It would have been more correct to say that the newest M8N modules are not usable with the publicly available versions of u-blox firmware and RTKLIB.  It turns out that u-blox did not use a particularly sophisticated method to scramble the debug messages and there are now several modified versions of u-blox firmware and RTKLIB floating around that have been hacked to unscramble the messages.  I don’t want to get into the question of ethics or legality of using these codes but just say that I personally am less comfortable using the debug messages in the modules where u-blox has made an obvious attempt to prevent this and have avoided any use of them at least for the time being.]

New b27 release of demo5 code

I’ve just released a b27  version of the demo5 code that incorporates all the changes in the b27 release of the official code.  I’ve also included some fixes for the Galileo satellites.  The biggest fix I added was for an array overrun that was causing solutions to intermittently report zero status when Galileo satellites were enabled.  Another fix was to correctly decode the range accuracy estimates in the Galileo ephemeris data.  The code can be downloaded from the code download section of the rtkexplorer.com website.   The source code is available in my Github repository.  Please let me know if you find any issues with this code, especially if it was something that was working in the previous code.

One issue I am aware of is the time tag feature which enables simulated real-time runs in RTKNAVI appears to be broken in the new code.  There was an existing incompatibility  between time-tag files that were created in the win32 version of RTKLIB and run in the win64 version or vice-versa.   It looks like an attempt to fix this in the latest release code actually made things worse and now the time-tag files don’t work at all, at least in the win32 version.

By the way, for anyone using the free starter edition of the Embarcadero compiler, be aware that it does not support building win64 executables.  The code will build, but the option to specify win64 is not available, so the compiler will just build the win32 code.  I hadn’t realized this until I tried to build the win64 version recently.

Also, I’ve recently got a hold of two low cost dual frequency receivers, one from Swift Navigation and one from Tersus, so I am collecting and analyzing data with them now.  I should have some results and comparisons to share in my next post soon.

Update to RTKLIB config file recommendations

I’ve just updated my “RTKLIB: Customizing the input configuration file” post from a few months ago with information on all of the new config parameters I have added to the demo5 code up through B26B.  I’ve also added more notes to some of the existing features based on my more recent experiences.

Limitations of the RTCM raw measurement format

In the last post I described a process to troubleshoot problems occurring in real-time solutions that are not seen in post-processing solutions for the same data.  I collected a data set demonstrating this issue, and traced the problem to the conversion of the measurement data from raw binary format to the RTCM format.  This conversion is typically done in real-time applications to compress the data and minimize bandwidth requirements for the base to rover real-time data link.  In this post I will look into that example in more detail and also explore some of the limitations of the RTCM format.

First, it is important to understand that the conversion to RTCM is not a lossless process. There are several ways in which information is lost in this process.  In some cases these losses are probably not significant but in other cases it is not so clear that is the case.

So let’s look at some of those differences.  We actually have three formats to compare here: the raw binary format from the u-blox receiver, the RTCM format, and the RINEX format.  Both the RTCM and RINEX formats contain less information than the raw binary format and information is lost when the conversion is made to either format.  The reason I include the RINEX format here is because in the post-processing procedure, the measurements, whether they come from the raw binary format or the RTCM format, must first be converted to RINEX format before being input into the solution.   What I see with my example data set that fails in real-time is that it looks good in post-processing if the raw measurements are converted directly from raw binary to RINEX but fail if the raw measurements are first converted to RTCM and then the RTCM is converted to RINEX.  Therefore it is very likely that there is something critical that is lost in the conversion to RTCM that is not lost in the conversion to RINEX.

The official RTCM spec is not freely available on the internet (it must be purchased), so I have relied on this document from Geo++ for the RTCM details.  Here is a chart of the most significant differences I am aware of between the three formats.  In the case of RTCM, these numbers apply only to the older 1002/1010 messages used by Reach and most other systems, not the newer MSM messages.

U-blox binary RINEX 3.0 RTCM 3.0
Psuedorange resolution double precison floating point 0.001 m 0.02 m
Carrier phase resolution double precison floating point 0.001 cycles = 0.2 mm 0.5 mm
Doppler resolution single precision floating point 0.001 Hz Not supported
Time stamp resolution double precison floating point 100 nsec 1 msec
Lock time 1 ms Lock status only Variable (> 1 ms)
Half cycle invalid Supported Supported Not supported

 

To figure out which (if any) of these differences is responsible for the failure I needed a way to run the solution multiple times, each run done with only a single difference injected into the conversion.

I already had a matlab script I had previously written previously to parse a RINEX observation file into a set of variables in the matlab space.  So I wrote a second script that goes the other way, from variables in memory to a RINEX observation file.  Once I had done this, I could read in the good RINEX observation file translated directly from the u-blox binary file, modify a single measurement type, write it back to a new RINEX observation file, then run this file through a solution.

My first guess was that it was the missing  “Half Cycle Invalid” flag that would prove to be the culprit since I have seen this before with the M8N receiver as described in this post.  Although I suspect that this probably is true in some cases, it did not make a difference with this data set.  My next suspect was the missing doppler measurements, since RTKLIB uses the doppler measurements when estimating the receiver clock bias, but again, it was not the case.  In the end it turned out to be my very last guess that made the difference and that was the time stamp resolution.  So much for me thinking I was starting to get the hang of this RTK stuff!  The differences were so small in the time stamps relative to the distance between them, that I had unconsciously  ignored them.  For example, the two first time stamps in the good measurements were 49.9995584 and 50.999584 but the time stamps in the failing measurements had been rounded off to 50.0000000 and 51.0000000.  Even after discovering that this round-off error makes a difference, it still is not obvious to me why this is true.  In any GPS solution, the receiver clocks are assumed to lack sufficient accuracy  to be relied upon without correction and the clock errors are one of the unknowns in the solution along with the three  position axes.  I don’t know why RTKLIB does not correctly estimate this error in its clock bias estimate and remove it.  Maybe one of you guys who has been doing this a lot longer than I have can explain this?

Just to be sure it wasn’t a fluke, I started the data processing at three different times in the data set, and I also ran additional solutions with the sign of the error in the time stamps reversed.  In every cases, regardless of sign, or starting location, the solution failed to get a fix when the error was present and succeeded when the error was not there.

I have read somewhere that more expensive receivers will typically align there time stamps to round numbers which would avoid the need for as much resolution.  The only expensive receivers I have access to are the CORS stations so I took a look at data from a couple of them.  Sure enough, it appears to be true that they do use round numbers for their time stamps.  If this is more generally true it might explain why the RTCM spec does not have sufficient resolution for the u-blox data but would work fine for more commonly used, higher priced receivers.

I was curious why the u-blox time stamps don’t occur at round numbers so took a look  at the hardware description spec.  I found this explanation

“In practice the receiver’s local oscillator will not be as stable as the atomic clocks to which GNSS systems are referenced and consequently clock bias will tend to accumulate. However, when selecting the next navigation epoch, the receiver will always try to use the 1 kHz clock tick which it estimates to be closest to the desired fix period as measured in GNSS system time”

I interpret this to mean that the receiver is aware of alignment error in its clock source relative to GPS system time, and it adjusts the time stamp values to  includes its estimate of that error.

Something else I am curious about but have not had time to investigate in any detail is how this issue is affected by differences between the RXM_RAWX measurements which are what is normally used with the M8T receiver, and the debug TRK_MEAS messages which also contain the raw measurements and are the only raw measurement messages available on the M8N receiver.  Looking at several data sets from the both the M8N and M8T, it appears that the TRK_MEAS time stamps for both receivers are aligned to round numbers  while the RXM-RAWX measurements are not aligned.  This means that the TRK_MEAS messages would not be affected by the lack of resolution in the RTCM format.   However, the TRK_MEAS measurements lack the compensation for inter-channel frequency delays in the GLONASS measurements and so would not be a good substitute.  Maybe it’s possible to combine the two into a single set of measurements?  The two include different references and clock errors so it is not obvious if that is possible. Below is an example of partial TRK_MEAS and RXM-RAWX outputs for the same epoch when both were enabled, TRK_MEAS on the top, and RXM_RAWX below.

trkmeas1

Another avenue I considered is using the newer MSM messages (1077,1087)in the RTCM format instead of the current 1002/1010 messages that Reach and most other users are using.  These have higher resolutions for the pseudorange and carrier phase, and include doppler and half cycle invalid flags.  Unfortunately, the resolution for the time stamps does not seem to have changed, or if it has, it hasn’t changed enough to see a difference in the output for the small deltas in my example.

There also appears to be a bug in the RTKLIB implementation of the encode or decode of these messages which sometimes causes the number of integer cycles in the carrier phase measurements to be incorrect (the fractional part is fine).    This bug appears to be present in both the official 2.4.3 release and the demo5 code but some of the changes I have made to the u-blox translation in the demo5 code seem to have increased the frequency of these incorrect measurements.

Reach does use the MSM messages for the SBAS measurements although it does not need to since the 1002 message supports SBAS as well as GPS.   It is possible this could introduce a problem for users in North America where the WAAS satellites used for SBAS correction include carrier phase measurements.  Users in Europe would not see this problem because the EGNOS satellites used for SBAS correction in Europe don’t provide the carrier phase.  I did not see any corruption in the SBAS carrier phase measurements in the initial RTCM data in this example but after I enabled the 1077 and 1087 measurements, I did see corruption in the measurements in all three systems.

So, unfortunately this is still somewhat a work in progress and I don’t have any easy answer how to fix this.  I am hoping some of the experts out there can comment and help put some of the pieces of the puzzle together.

In the meantime I would suggest using the u-blox binary format for the base-rover data-link instead of the RTCM format.  The bandwidth requirements will be 2.5 to 3 time higher but some of this can be offset by reducing the measurement sample rate for the base station.

I believe a long term fix is going to require two things.  First of all a workaround to the time tag resolution issue described in this post.  But even with fixed, the half cycle valid flag and doppler information will still be lost.  I haven’t  done any tests to understand how critical the doppler measurements are, but I have demonstrated in the post I referenced above, that losing the half cycle valid flag can definitely degrade the solution.  Fortunately, the newer MSM RTCM messages do include both half cycle valid flag and doppler.  They do not appear to be usable until the bug in the encode/decode of the carrier phase data is fixed, so that will have to happen as well.

On the other hand, I suspect most real-time RTK systems do use RTCM and manage to live with its limitations so maybe I am overreacting here.  I would be interested in other people’s opinions and experiences with RTCM on u-blox or other receiver types.

 

 

 

Moving-base solutions (part 2)

In my last post I discussed solving for moving-base data sets using the ordinary fixed-base solution modes and promised to discuss solutions using the RTKLIB “movingbase” method in my next post.

Let me start by saying I had hoped to have had more success with this method by the time I got to writing this post but that has not been the case.  I have tried both the most recent demo5 code and the 2.4.3 release code and neither gives me clean reliable solutions if I turn on the “movingbase” option.

In the previous post I had picked a fairly challenging data set to demonstrate with.  In case that was interfering with the solution, I first switched to a cleaner data set for this experiment.  This is a data set taken with two Emlid Reach M8T receivers, one mounted on each end of a kayak while out in the ocean near Sussex England and was sent to me by Matt. Here is the solution using the same input configuration file I used in my previous post, with “movingbase” turned off.

kayak1

The distance between the receivers in this case is larger and the deviations from a circle are very small.  This result should provide very accurate heading measurements.  The two visible deviations from the circle in the plot above are caused by rolling the kayak over an embankment at at launch and retrieval.  These large z-axis movements violate the assumption that movements are all in the x-y direction and cause the solution to leave the circle onto a sphere but are not actual errors.

Here’s a solution using the latest 2.4.3 code with “movingbase” enabled.

kayak2

It may be that I am doing something silly but I did spend a fair bit of time trying to get a decent solution without success.  If anybody more familiar with “movingbase”solutions would like to take a shot at it, I’ve uploaded this data set to here on the rtkexplorer.com website.  Please let me know if you are able to get a decent “movingbase” solution with this data.

I went back to the more challenging original data set from last post since I actually had slightly more success with that one, although still quite limited.

In my first attempt with “movingbase” enabled, I ran into the same problem as last post where the missing measurements in the base data caused large spikes in the solution.  This was true even with the max age of differential set to less than one sample time, which is what fixed the problem previously.  Looking at the code, this is because the “maxage” input parameter is ignored when “movingbase” is set and a hard-coded value is used instead (more about this below).   I modified the code so that it did check the “maxage” limit for “movingbase” and then got the following solution.

movebase6

The spikes are much smaller now that the missing samples are removed but they are still occurring, this time when both measurements are present.  The spikes are large enough to make this solution useless.  At this point I have given up trying to get useful results with the “movingbase” solution but again would be very interested if someone else can show good results for this data as well.  The raw data is located at the same link as the previous data set.

I am not completely surprised that the “movingbase” solutions are not working well, since the only other case I’m aware of that RTKLIB allows the base to move also has caused me problems.  That occurs when running real-time solutions and setting the base location to “Average of Single Positions” and then setting the number of averages greater than one.   Whenever I have done this, the solution takes a long time to converge.  I get much faster first fixes if I set the number of averages to one which then prevents the base location moving after the first measurement.

Since I did spend some time going through the code to understand how the “movingbase” solution is supposed to work, I thought I would share that here.  Setting the solution mode to “movingbase” sets the opt->mode variable in the code to “PMODE_MOVEB” so I started by searching the code base for this.  There is also a section in the RTKLIB manual in Appendix E that describes the moving-base model.  Here’s a quick summary for the significant differences I found that occur when in “movingbase” mode

  1. Adjust base position every epoch: Based on single point position result.
  2.  Synchronize rover/base measurements:  The measurement times between the two receivers may vary slightly (usually less than 2 msec).  This can degrade accuracy in the case of very fast-moving rovers.  To prevent this, the base measurements are adjusted for their time difference.  Uses a hard-coded value (1.01 sec) for max age of differential instead of the “maxage”input config parameter.
  3. Constrain baseline: Add a pseudo-measurement to the kalman filter measurement update based on the error from the baseline length specified in “pos2-baselen” and “pos2-basesig” input parameters. (Only applied if pos2-baselen>0)
  4. Increase kalman filter update iterations:  Add two iterations to the number of iterations specified by the “pos2-niter” input parameter.  This should improve the response in the case of large non-linearities introduced by short baselines or rotational accelerations.

So, based on these results, my recommendation for processing moving-base data is to use the ordinary fixed-base solution parameters I described in my previous post.  This will usually give good results but be aware that there will be limitations in the cases where the rover moves a very long distance away from it’s starting point or if is moving fast relative to any sampling time deviations between the two rovers.