Using SSR corrections with RTKLIB for PPP solutions

If you have been following recent announcements in precision GNSS, you may have been hearing a lot about SSR (State State Representation).  SwiftNav recently announced their Skylark corrections service, and u-blox announced a partnership with Sapcorda to provide correction service for their upcoming F9 receivers.  Both of these services are based on SSR corrections.

So, what is SSR?  Very briefly, it refers to the form of the corrections.  In traditional RTK with physical base stations or virtual reference stations (VRS), the corrections come in the form of observations in which all of the different error source are lumped together as part of the observation.  This is referred to as OSR (Observation Space Representation).  In SSR corrections, the different error source (satellite clocks,  satellite orbits, satellite signal biases, ionospheric delay, and tropospheric delay) are modeled and distributed separately.  There are many advantages to this form but what seems to be driving industry towards it now is that it allows the current VRS model where each user requires a unique data stream with observations tailored for their location to be replaced with a single universal stream that can be used by all observers.  This is a requirement if the technology is going to be adopted for the mass-market automotive industry for self-driving cars, since it is not practical to provide every car with it’s own data stream.

For more detailed information on SSR, Geo++ has a one page summary here and IGS has an 18 minute video presentation on the topic here.  Both are excellent.

Below is an image I borrowed from the IGS presentation which shows the flexibility of the SSR format.  It is intended to show how the same SSR data stream can be used globally for PPP quality corrections and also regionally for RTK quality corrections but it is also a good visual for understanding the message details I describe below.

ssr1

The RTCM standards committee is still in the process of finalizing the messages used to send the different correction components.  They have split the work into three phases.  Phase 1 includes the satellite clock, orbit, and code biases.  Phase 2 includes satellite phase biases and vertical ionosphere corrections, and phase 3 includes ionospheric slant corrections and tropospheric corrections.

There are several real-time SSR streams accessible for free today.  Unlike the paid services, they do not contain enough detailed regional atmospheric corrections to use as a replacement for a VRS base but they can easily be used for static PPP solutions.

I used the CLK93 stream from CNES for an experiment to test how well RTKLIB handled the SSR corrections.  It includes the Phase 1 and Phase 2 RTCM messages but not the Phase 3 messages.  Here is the format of the the messages in the CLK93 data stream:

clk93

You can register for free access to the CLK93 (and other) streams from any of these locations:

Unfortunately, RTKLIB currently only supports the Phase 1 RTCM messages and even this is not complete in the release version.  I have gone through the code and made a few changes to make the Phase 1 SSR functional and have checked those changes into the demo5 Github repository.  I also added some code to handle the mixed L2 and L2C observations from the ComNav and Tersus receivers.  After a little more testing I plan to release this code into the demo5 executables, hopefully in the next week or two.

With only phase 1 measurements, the RTKLIB PPP solutions will work much better with dual frequency receivers than with single frequency receivers.  This is because single frequency receivers require ionospheric corrections for longer baselines.  For this reason, I did not bother with collecting any single frequency data.  Instead, I collected both L1/L2C data with a Swiftnav Piksi Multi receiver and L1/L2/L2C data with a ComNav K708 receiver and a Tersus BX306 receiver.

RTKLIB is usually used to calculate PPP solutions without SSR corrections but this requires downloading multiple correction files for orbital errors, clock errors, and code bias errors and it is usually done with post-processing rather than real-time, after the corrections are available.  With SSR, the process is simpler because the solution can be done real-time and there is no need to download any additional files.  It does, however, require access to the internet to receive the real-time SSR data stream from an NTRIP caster.  The solution can be calculated real-time or the SSR corrections and receiver observation streams can be recorded and the solution post-processed.

To enable the use of SSR corrections in RTKLIB, you need to set the “Satellite Ephemeris/Clock (pos1-sateph) input parameter to either “Broadcast+SSR APC” or “Broadcast+SSR CoM”.  Note that CoM stands for Center of Mass and APC for Antenna Phase Center.  They refer to the reference point for the corrections.  The CLK93 corrections are based on antenna phase centers.

To generate my PPP solution I set the solution mode to “PPP-Static”,  ephemeris/clock (pos1-sateph) to “brdc+ssrapc”, ionosphere correction (pos1-ionopt) to “dual-freq”, and troposphere correction (pos1-tropopt) to “est-ztd”.  I also enabled most of the other PPP options including  earth tides,  satellite PCVs, receiver PCVs, phase windup, and eclipse rejection.

RTKLIB PPP solutions don’t support ambiguity resolution so the ambiguity resolution settings are ignored.  I specified the satellite antenna file as “ngs14.atx” which is the standard antenna correction file and is available as part of the demo5 executable package.  I also needed to include the CLK93 data stream as one of the inputs in addition to the receiver observations (and navigation file if post-processing).

I collected a couple hundred hours of observations with the SwiftNav receiver connected to a ComNav AT-330 antenna on my roof with moderately good sky visibility.  I then ran many four hour static solutions over randomly selected data windows.  I also collected a small amount of raw data from a ComNav K708 receiver and a Tersus BX306 receiver.

Below is a typical 12 hour static solution for a SwiftNav and a ComNav receiver.  The SwiftNav solution is in green and the ComNav solution is in purple.  Zero in these plots represents an online PPP solution from CSRS from data collected over a month earlier.  In this particular example, the SwiftNav solution is slightly better but this was not always the case.

 

ssr2

Here is a shorter data set from a Tersus BX306 receiver.  With the relatively small amount of Tersus and ComNav data I collected, I did not notice any differences in convergence rates or final accuracy between any of the three receivers.

ssr3

The solutions generally all converged to less than 6 cm of error in each axis after 4 hours with one or two minor exceptions that seemed to involve small anomalies at the day boundary.  Since the RTKLIB PPP solutions don’t include ambiguity resolution they do take longer to converge but the eventual accuracy should be similar.

I’ve uploaded some of the raw observation data for the different receivers and the CLK93 data stream as well as the config file that I used for the solution here.

This seems like a good start and I hope that RTKLIB will support phase 2 and phase 3 corrections in the future.

Advertisements

10 thoughts on “Using SSR corrections with RTKLIB for PPP solutions”

  1. Thank you so much for great contents…

    I want to establish Real Time PPP with RTKnavi, but I have a problem. Is it possible to use RT-PPP for a station that its observations are exists in casters? I use CUT07 station for testing RTKnavi for RT-PPP. I introduce it as rover station and use RTCM3EPH as input stream correction. ( I even use IGS03 too). but nothing happen.
    in Error/warning section the “no obs data” is depicted. I change the station but nothing happen. Would you please help me?

    Like

    1.         Yes, you can do real-time PPP using an NTRIP stream from a CORS station.  I would recommend including SSR corrections as I describe in <a href="https://rtklibexplorer.wordpress.com/2018/05/08/using-ssr-corrections-with-rtklib-for-ppp-solutions/">this post</a> using the demo5 version of RTKLIB.      
      

      Like

  2. This is a great site to learn about RTK positioning. The data and experiments are always very interesting. I am starting to look at some RTK data. I was surprised that very little information is available online related to the .osr data format. Any suggestions of a tool to read/view/convert such data files will be very helpful. I can’t find any after an exhausting web search.

    Like

  3. Interesting. Ive seen some of the stuff already, but from what I understand for cm precision regional corrections are still needed even with SSR. This also means there needs to be a newtork of base stations where do these corrections derive from. The only improvement of regional SSR over traditional VRS (OSR) that I see is somewhat lower bandwidth. Is that correct? The bandwidth of traditional VRS may not really be an issue though until a really globally mass-scale adoption of autonomous vehicles takes place, which may be decades away. Current LTE networks will probably be able to handle many VRS streams in the same area. I logged a VRS observations during a 2 hour drive and only 3 packets were lost from a ping that run each second.

    Liked by 1 person

    1. Hi Kozuch. Much of what you say is true. Regional ionospheric corrections are probably necessary for single frequency solutions or kinematic dual frequency solutions but I find the global SSR streams like CLK93 that are available for free are useful for real-time static PPP solutions with a dual frequency receiver.

      Like

  4. Ok. Just tried it with the stream from CDDIS for CLK93 stream. Question is how to you set up the input files for that option.

    Thanks
    Mike

    Like

      1. Thanks for posting the updated info on using the M8T. Now not so curious about testing it out for now. The problem I was having was the actual connection to the CDDIS server, couldn’t get the data stream. Do I need the ssl certificate in the same folder as rtklib?

        Like

  5. Thank you for the explanation of SSR. I was wondering what that was when I was compiling testing rtkrcv executable with the latest demo5 code.

    From the brief read above, it should kind of work with a Ublox m8n or m8t as well if I just wanted to test it. To be honest, things like the switfnav and comnav are a little out of my price range 🙂 maybe the F9 will be better, I doubt it.

    Thanks
    Mike

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.