Exploring moving-base solutions

Recently, I’ve had several questions about moving-base solutions so that will be the topic for this post.

As you might guess from the name, a moving-base solution differs from the more common fixed-based solutions in that the base station is allowed to move in addition to the rover.   Although it could be used to track the distance between two moving rovers it is more commonly used in a configuration with two receivers attached to a single rover and used to determine heading. Since the receivers remain at a fixed distance from each other, the solution in this case becomes a circle with a radius equal to the distance between the receivers.  The location on this circle corresponds to the rover’s heading which is easily calculated using a four quadrant arctan of the x and y components of the position.  I also used moving base solutions in several of my earliest posts because the circular nature of the solution makes it easier to verify the solution and to measure errors.  Since all solution points should be on the circle, any deviation from the circle can be assumed to be error.

To be more exact, everywhere I mention “circle” above I really should say “sphere” instead since the solution has three dimensions, but if the rover is ground-based, the movements in the z-axis will be relatively small and for simplicity we can assume it is a circle.

In fixed-base solutions, the measurement rate of the base station is often lower than the rover both because it’s location is not changing and also because the base data often has to be transmitted over a data link which may be bandwidth limited.  In a moving-base solution, since both receivers are moving, and there is usually no need for a data link since they are both attached to the same rover, it makes sense to use the same data rate for both receivers.

For this exercise, I chose to use a data set I discussed previously in my “M8N vs M8T” series of posts.  It consists of two receivers, an M8N and an M8T, on top of a moving car and another M8T receiver used as a fixed base station.  The car drives on roads with a fairly open sky view for up to a couple kilometers away from the base station.  The base station is located next to some sheds and a tree, so is not ideal, but still has fairly open skies.  All three receivers  ran at 5 Hz sampling rate and both moving receivers have some missing samples.  I’m not sure exactly why this is, it may be because I used a single laptop to collect both data streams.  Regardless of where they come from, I have found occasional missing samples are fairly common whenever I collect data at higher sample rates and believe the solution should be robust enough to handle them.  The rover M8T data also has a simultaneous cycle-slip type receiver glitch near the beginning of the data as described in my last post.  Overall, I would consider this a moderately challenging data set but those are often the best kind for testing the limits of RTKLIB.

union1

Having data from three receivers gives us the luxury of being able to calculate three different solutions (base->rover1, base->rover2, and rover1->rover2) and then compare results between them.  Since the first two solutions are fixed-base and the third is a moving-base, it also allows us to validate the moving-base solution using a combination of the two fixed-base solutions.

To start with, let’s calculate solutions for the distance between each moving receiver relative to the fixed base station using the demo5 code and my standard config files for the M8N and M8T receivers.  The only difference between the two config files is that the GLONASS ambiguity resolution (gloarmode) is set to “fix-and-hold” for the M8N config file and to “on” for the M8T config file for reasons explained in previous posts.   I’ve also done the conversion from raw data to RINEX observation files with the TRK_MEAS and STD_SLIP receiver options set to 2 and 4 respectively, again for reasons previously explained.  I set the solution mode to “static-start” since I knew the data set started with the rover stationary for long enough to get a first fix but I also could have used “kinematic” mode.

Subtracting the two fixed-base solutions gives us the distance between the two rover receivers which should be equal to a moving-base solution calculated directly between the two rovers.  The only difference is that the errors will be larger in the difference of two solutions than they will be in the direct solution because the errors in the combined solutions will accumulate.

Here are the positions and ground track for the difference between the two solutions, using the “1-2” plotting option in RTKPLOT.  As expected we get a circle for the ground track.  From the radius of the circle we can tell that the two rovers were about 15 cm apart.  Usually you would put the two receivers as far apart as possible, since the errors in the heading will decrease as the distance between the rovers increases but in this case I hadn’t intended to use the results this way so had placed the rovers closer together.  Still, it might be representative of a configuration on a small drone or other small rover.

movebase5

Next let’s try to calculate the solution directly between the two moving receivers.  RTKLIB does have a special “moving-base” mode but we won’t use this yet.  The “kinematic” solution calculates the distance between the two rovers regardless of the location of the base, so for now we can ignore the fact that the base is moving.  This will breakdown eventually if the rover gets too far from the base but since in this data set the rover is only a couple kilometers from the base at its farthest point we should be OK.

The only change I made to the config file from the previous M8N run for this run was to reduce the acceleration input parameters “stats-prnaccelh” and “stats-prnaccelv” which are used to describe the acceleration characteristics of the rover in the horizontal and vertical directions relative to the base.  In the fixed-base solution, these need to include both the linear accelerations and rotational accelerations since the rover is moving and the base is fixed, but in the moving-base solution, since we care only about differential acceleration between the receivers, we can ignore the linear accelerations and include only the rotational accelerations.  I just used a rough guess and reduced the numbers from (1,0.25) to (0.25,0.1) but I could have found more exact numbers by looking at the acceleration plot of an initial run of the solution.

Here’s the solution using this configuration.  It looks reasonable except for the occasional large spikes.

movebase2

After a little debugging, I found that the spikes were occurring wherever there was a missing sample in the base data.  When this occurs, RTKLIB just uses the previous base sample.  This works fine when the base is not moving, but in this case that’s no longer true, and the previous base measurements are not good estimates of the current position.  We can tell RTKLIB to skip these measurements by setting the maximum age of differential to something less than one sample time.  This is done with the “pos2-maxage” input parameter.  I set it to 0.1 which is half of one sample time.

With this change, I got the following solution for the position.  Much better!

movebase3

The ground track for this solution is shown below on the right, on the left is the previous ground track derived by subtracting the two fixed-base solutions.  As expected, the solutions look very similar except the moving-base solution has smaller errors which appear as deviations from a perfect circle.

movebase1

To further validate this solution we can compare the heading calculated from the moving-base position with the heading determined from the velocity vector of the fixed-base solution.  This wouldn’t work if the rover were a boat, drone, or person, but in the case of a car there are no external lateral drifts and the car will move in the direction it is pointed (unless it’s in reverse of course).   This won’t work if the velocity is zero or near zero but for reasonably high velocities we should get a good match.  The top plot below shows the difference between the two.  The blue line is for all velocities and the red is for when the velocity drops below 5 m/s.  The bottom plot shows the distance from the base to the rover.

movebase4

As expected, the errors are large when the velocities are low but we get a good match otherwise.  There also appears to be no correlation between the errors and the base to rover distance which suggests we are well below the maximum base to rover distance before we start to see issues with our assumption that the base did not move.

Overall, this solution looks excellent, with 100% fix and based on deviations from the circle, very small errors.  In fact, I recommend this configuration over the RTKLIB “moving-base” solution if you are able to live within the maximum baseline constraints.  I don’t know how large that is, but it looks like it may be significantly larger than 2 kilometers which is probably large enough for most applications.

In the next post I will explore what happens when the RTKLIB solution mode is set to “movingbase” in more detail but for now let me bring up just one of its effects since it is something we can also do here without invoking “movingbase” mode and it may have some benefit.

RTKLIB uses an extended kalman filter which is designed to handle non-linearities in the system by linearizing around the current operating point.  This generally works quite well but as the system becomes more non-linear, the errors introduced by this approximation grow larger.  One way to deal with this is to run multiple iterations of the kalman filter every measurement sample to converge on the correct answer.  As we get closer to the correct answer, we will operate closer to the point around which the system has been linearized and the errors will be smaller.  There is an input parameter in RTKLIB called “pos2-niter” that specifies the number of filter iterations for each sample.  The default value is one but when “posmode” is set to “movingbase” two iterations are automatically added to whatever this value is set to.  In the default case, we would get three iterations every sample instead of one.  Since the kalman filter assumes all velocities are linear and in the moving-base case we have been looking at, they are all rotational and non-linear, it might make sense to do this.  In my example, the sample rate is quite high relative to the rate of rotation and I found it did not help, but in other cases where the rate of rotation is higher relative to the sample rate, it might be a good idea.

So, let me finish by summarizing the changes I recommend for moving-base solutions.

  1.  Set measurement sample rate for both rover and base to the same value
  2. Leave “pos1-posmode” set to “kinematic” or “static-start”
  3. Set “pos2-maxage” to half the sample time (e.g 0.1 for 5 samples/sec)
  4. Reduce “stats-prnaccelh” and “stats-prnaccelv” to reflect differential accelearation
  5. Experiment with increasing “pos2-niter” from 1 to 3

These recommendations are based on my fairly limited experience with moving-base solutions so if anybody else has other recommendations, please respond in the Comments section.

I have added the data set I used here to the data sets available for download on rtkexplorer.com for anyone who would like to experiment further with this data.

In the next post, I will talk more about what happens when “pos1-posmode” is set to “movingbase”.

 

 

Advertisements

Receiver warm-up glitches

I’ve described before the occasional glitches that both the M8N and M8T seem to be susceptible too in their first few minutes of operation, but my previous description was buried in one of my more technical posts and maybe not seen by people more interested in just the practical side of using RTKLIB, so I thought it was worth bringing them up again.

Here is an example of one of these glitches which was in a data set recently sent to me by a reader, and one that was giving him trouble finding a solution.  The data is very clean, except for a nearly simultaneous cycle-slip (shown by red ticks) on every satellite.

rec_glitch

Here is a zoomed in image of the same glitch.

rec_glitch2

I see these glitches on both the M8N and the M8T receivers.  Every occurrence I have seen, the glitch occurred within a few minutes of turning on the receiver, and was present on every satellite.  In this example it occurred seven minutes after starting up, usually I see it within in the first five minutes.

These glitches are very disruptive to the RTKLIB solution.  Since the cycle-slips affect every satellite, all the phase-bias kalman filter states are reset and the solution has to start again from the beginning.  In some cases, the phase-biases initial values may have larger than normal errors in which case it is even worse than starting over.

I don’t have any good suggestions on how to deal with these other than to avoid them in the first place.  From my experience I believe they are more likely to occur if the external environment of the receiver has just changed.  For example if it went from hot to cold, or into the sun.  Once the receiver has had time to stabilize, everything is usually OK.

Giving the receiver time to adapt to it’s current environment before collecting data and protecting the receiver from sudden changes should help avoid these glitches.  Using external antennas with cables rather than the small antennas that come with the receivers helps because it allows you to place the receiver in a more protected location than the antenna.  For example, when I collect data from a moving car, I place the antenna on the roof but keep the receiver in the car.

For information on plotting the observations with cycle slip enabled see this post.  For another post where I discuss this problem in more detail, see this post.

Does anyone else have more information on what causes these glitches and maybe other steps that can be taken to avoid or deal with them?

 

 

Counterfeit M8N modules

I had a few  comments recently on counterfeit u-blox M8N modules so I thought I would take a closer look at some of my receivers to see if I could spot any fakes.

Here is a photo of the module label for a unit from CSG, the most expensive M8N receiver I have and based on their reputation, the one I have the most faith that it is genuine.

csg_ubx

 

Here are photos from two of my other receivers.  The on on top is from a GYGPSV5-NEO I got from ebay.  As far as I can tell this one is genuine as well since the label looks very similar.  Performance-wise, it is also indistinguishable from the CSG unit.

real_ubxfake_ubx

The photo on the bottom is a from a very inexpensive M8N based receiver I bought recently on ebay but have not used.  They didn’t even try very hard to make it look real!  The font is different, the QR code is different, the copyright symbol is a completely different size.    I don’t think there is any question that this is a fake.  I have not used this module so I don’t know how well it performs compared to the genuine modules.  It’s possible it works just as well, I don’t know.  I also didn’t take off the module cover and look inside but I would assume it has a real ublox M8030 chip inside.  Apparently some of the fake units cut corners on some of the other components inside such as the size of the flash.  Here’s a photo of the unopened unit.

neom8n_dg

 

I did open up one of my GYGPSV5-NEO receivers that I had accidentally damaged by using 5 volts on the UART lines instead of 3.3 volts.  This is what it looked like, in case anybody is curious.

inside_ubx

 

On another note, I have just updated the demo5 executables on my website.  The new code is merged up to RTKLIB 2.4.3 b26 and now matches what I have on my Github page.  It includes the changes I described in my last post as well as a change for post-processing “combined mode” that I will describe in a future post.